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ABSTRACT

Model-Agnostic Meta-Learning (MAML) [3] has proven to be a
powerful, lightweight framework for transfer of learned knowledge
in task-specific model adaptation. However, recent work in adver-
sarial machine learning has demonstrated that many deep neural
networks are susceptible to adversarial examples – perturbed inputs
that an attacker has designed to cause the model to make a mistake
[17]. In this paper, we propose a series of experiments designed to
test the susceptibility of MAML to adversarial attacks. Moreover,
we test the hypothesis that an adversary can transfer an attack from
MAML’s shared representation of knowledge to a model tuned for
performance on a particular task, and even between task-specific
models fine-tuned from a common MAML initialization.

1 INTRODUCTION

Deep learning methods have achieved significant progress in many
domains, occasionally surpassing human performance in specific,
narrow problems. While the scope of abilities learned by such
deep networks is, in general, tough to generalize, recent research
has yielded methods for transferring learned knowledge between
related tasks. In one approach, known as meta-learning, several
related instances of a more general problem are tackled together,
with an initial exploration seeking to uncover general principles
underlying the related tasks. The result of this exploration is used
to initialize a model which is then optimized to perform well on a
single task.

One particularly simple yet effective framework, Model-Agnostic
Meta-Learning (MAML), has been shown to perform well on few-
shot learning tasks in domains such as character recognition and
reinforcement learning [3] [15], opening the door for rapid adapta-
tion by providing potential for task-level model specificity without
loss of generalization. Meta-learning systems (particularly MAML)
have huge potential for practical deployment, since they allow for
fine-tuning of a general deep learning model to a user’s specific
needs.

The increasing popularity of meta-learning necessitates proac-
tive investigation of its possible failure modes. Deep networks are
often vulnerable to adversarially crafted, tiny perturbations to the
input which, though imperceptible to humans, result in a misclassi-
fication by the network [17] [4]. These perturbed inputs are known
as adversarial examples, and are often most effective against models
that are trained for narrowly defined tasks.

The specificity inherent to fine-tuned MAML models suggests
that they may be particularly susceptible to adversarial attacks.
Further, the similarity betweenMAMLmodels fine-tuned for related
tasks suggests that adversarial attacks crafted to defeat one MAML
fine-tuned model may transfer to MAML model fine-tuned for
related tasks.

In this work, we study the susceptibility of MAML-trained classi-
ficationmodels to adversarial attacks, and the transferability of such
attacks across MAML models trained from a common initialization.

This paper’s proposed contributions are as follows:
• We investigate the susceptibility of MAML-trained meta-
models and fine-tuned models to adversarial examples.

• We investigate the transferability of adversarial attacks from
MAML-trained meta-models to their fine-tuned descendants.

• We investigate the transferability of adversarial attacks be-
tween MAML-trained fine-tuned models which share a com-
mon meta-model.

2 BACKGROUND

2.1 Adversarial Examples

A model is a function fθ with parameters θ . Given a particular
model fθ , an adversarial attack on the model applies a small pertur-
bation to input examples to induce a misclassification. Concretely,
the attack perturbs an input x by adding a small vector v , such
that fθ places the adversarial input x̃ = x + v in a different class
than the original x . Usually, adversarial generation processes limit
the size of the perturbation (often resulting in perturbations small
enough to be unnoticeable to humans).

Non-targeted adversarial attacks generate perturbations with the
objective of increasing the model’s loss with respect to the true label
y. A common approach for generating adversarial perturbations
is to ascend the gradient of the loss function with respect to an
example x . We use both of the following attack methods to generate
non-targeted adversarial attacks in this work.
Fast Gradient Sign Method (FGSM) FGSM applies a perturba-
tion vector v (pointing in the direction of the sign of the loss-
function gradient ∇xL) element-wise to the input vector x , while
fixing the size of the perturbation |v | by some constant ϵ . The
adversarial example is thus:

x̃ = x + ϵ · sign (∇xL(fθ (x),y)) (1)

Optimization-Based Attack This technique aims to jointly max-
imize the loss L and minimize the size of the perturbation |v | =
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d(x , x̃) [9]. This can be formulated as the optimization problem:

x̃ = argmin
x̃

λd(x , x̃) − L(fθ (x̃),y) (2)

2.2 Model-Agnostic Meta-Learning

In a meta-learning scenario, we consider the problem of learn-
ing a model that can adapt to multiple tasks. In this paper, these
tasks are supervised classification problems. A supervised task
T = {L(ŷ,y), P(x ,y)} consists of a loss function L(ŷ,y) → R and
a distribution over samples P(x ,y). Tasks are distributed according
to p(T). For a task Ti = {Li , Pi } ∼ p(T), the K-shot learning prob-
lem requires finding a good model using only K labeled samples
drawn from Pi and the feedback generated by Li . In Meta-Agnostic
Meta-Learning (MAML) [3], this task is accomplished by explicitly
optimizing a model with information about the general distribution
of tasks p(T). This general model can be quickly trained to work for
any Ti ∼ p(T) using only K samples drawn from Pi . To compute
parameters θ ′i that work well on a particular task Ti , we perform
the gradient descent update on the meta-model parameters θ given
a step size α on (x ,y) ∼ Pi :

θ ′i = θ − α∇θLi (fθ (x),y) (3)

We would like to learn a good θ on a set of training tasks, so
that we can later perform this update using K samples from a
particular task Ti and achieve a low loss. This leads to the MAML
meta-objective:

min
θ

∑
Ti∼p(T)

Li (fθ ′
i
) =

∑
Ti∼p(T)

Li (fθ−α∇θ Li (fθ )) (4)

That is, we optimize over the meta-model’s parameters θ based
on how each set of updated task-specific parameters θ ′i perform
on their respective tasks Ti . Once optimized, the meta-model is
not likely to perform optimally on any of the individual tasks, but
rather is close (in parameter space) to the optimal models for a
variety of the individual tasks. Thus, going from the meta-model
to a model optimized (fine-tuned) for a particular task consists of
standard SGD optimization with respect to the task-specific loss,
taking the meta-model parameters as the initial starting point.

There are many meta-learning models that can perform this
process, however MAML is one of the simplest formulations and is
also one of the most effective. MAML differs from other techniques
[2, 16] in that it does not require extra parameters for the meta-
objective. Despite this, it still achieves state-of-the-art empirical
results [3].

2.3 Universal Perturbations

In general, adversarial perturbations for a specific task are input-
specific; that is, a perturbation which causes a misclassification of
a particular image will not work for the rest of the validation set.
However, recent work has demonstrated the existence of so-called
‘universal adversarial perturbations,’ which can be identically ap-
plied across the entire dataset and cause a large number of misclassi-
fications [11]. While a general perturbation calculated for a specific
input is not universal, by sequentially applying an FGSM-like attack
to a variety of input images and subsequently re-normalizing the
size of the perturbation vector, such a universal perturbation can be

constructed (for a single task). We will explore the construction of
perturbations which are universal among a variety of related tasks.

2.4 Measuring Model Susceptibility to

Adversarial Attacks

To our knowledge, no standard metric has been adopted to quantify
the vulnerability of a particular model to adversarial attacks. In this
work, we use a method which has been applied previously in a study
of adversarial susceptibility [7]. Specifically, we apply perturbations
of a variety of sizes to examples drawn from a labeled validation
set and measure, as a function of the size, the fraction of perturbed
inputs which result in a misclassification. This metric is known as
the top-1 inaccuracy as it considers all cases in which the model
output an incorrect classification; it is also possible to consider
the top-n inaccuracy, in which the adversarial attack is considered
successful only if the model’s n most likely classifications do not
contain the true label. To quantify the size of the perturbation,
note that for the FGSM technique, this size is simply given by ϵ ,
the multiplier on the sign of the gradient vector (see Eq. 1); in the
second method (Eq. 2), a proxy for the size of the perturbation is
given by λ−1.

3 TRANSFERABILITY OF ADVERSARIAL

ATTACKS ON MAML

Consider a trained meta-model fθ and two models fine-tuned from
fθ , fθ ′

i
and fθ ′

j
for tasks Ti and Tj . What is the relationship between

these models in terms of their susceptibility to adversarial exam-
ples? For example, if one can construct adversarial examples for fθ ,
is it easy to construct adversarial examples for fθ ′

i
? Can one easily

perturb an adversarial example for Ti to attack the model for Tj?
We will explore these questions through a series of experiments.

In realistic scenarios, an attacker will likely not have full access
to the model f or its parameters θ , but will be forced to construct
some model which approximates the behavior of the original model.
We call this a pseudo-model, f̂ . Attacks on f̂ often translate well
to attacks on the original model [12]. Our aim here is more to
understand the vulnerabilities of the MAML framework to attack;
thus, we assume the most favorable scenario to the attacker in
which the attacker can use the entire model and has access to the
model parameters. Despite this simplification, in a more realistic
scenario, an attacker could create a sufficient-quality pseudo-model
and apply the attacks laid out in this work.

3.1 Theoretical Justification for Adversarial

Attacks on MAML

We consider the question of how easily one can adversarially attack
a meta-model trained with MAML, and study constraints on the
size of the adversarial perturbations necessary. In particular, we
study the dimensionality of the subspace generated by adversarial
examples at an input point, with the motivation that, as elaborated
on by Goodfellow et al. [18], it is fruitful to treat the dimensionality
of the adversarial subspace at a point as a proxy to measure both the
prevalence of adversarial examples and the transferability of those
examples to other models. First, recall that MAML-trained meta-
models are trained not with accuracy or loss optimization in mind
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but rather trained to maximize the model’s capacity to generalize
quickly (i.e. throughK-shot training, for lowK ) across a distribution
of diverse tasks. Because such models are optimized to learn data
representations suitable for high potential to rapidly generalize
on a number of tasks, and not for straightforward loss reduction,
a trained model will necessarily reside, in parameter space, at a
point θ where various tasks’ loss functions on the model are highly
sensitive to small shifts in the parameters, behaving with a high
degree of elasticity. Indeed, it is this high degree of elasticity which
allows models to improve their loss in just a few training steps
on a new task. Assuming that the fine-tuning step of the MAML
algorithm is both effective and necessary, it follows that θ must be
near local minima of many of the loss functions Li corresponding
to different tasks. Hence, for a well-trained meta-model, we can
expect the degree of smoothness 1 of the loss function to be low.

Goodfellow et al. [18] shows that the smoothness of the loss
function in input space inversely correlates with the number of
independent adversarial directions at that point in input space. Fur-
ther, the loss function L used to train the meta-model is formulated
as a weighted average (over the task distribution) of tasks’ loss func-
tions Li , and hence low smoothness in each of the Li indicates
low smoothness in L. Furthermore, if we assume that the parame-
terized set of models is constrained to itself contain only smooth
models 2, then it follows that, viewing L : X × Rn → R+ as a
joint function of the inputs (from input space X ) and of parameters
(from parameter space Rn ), the low smoothness of L(θ , ·) extends
to a similarly low degree of smoothness in L(·,x), for any x ∈ X .
Thus, the above provides us with an argument for the low degree of
smoothness of the meta-model’s loss function in input space, which,
as discussed above in reference to the result by Goodfellow et al.
[18], indicates the relatively high dimensionality of the adversarial
subspace at points in the input space of the meta-model. Thus, given
our assumed premises, we have strong reason to suspect both a
prevalence of adversarial examples in a MAML-trained meta-model
and ease of transferability of those adversarial examples to similar,
and therefore, fine-tuned, models.

3.2 Experimental Setup

In experiments from Sections 3.3-3.6, both meta-models and fine-
tuned models are CNNs containing 4 convolutional layers with
ReLU activations and finally a fully connected layer followed by
a softmax activation. For these experiments, we use the Omniglot
dataset [8]. Each classification task consists of a random sample of
twenty classes of characters from the entire dataset. Prior to fine-
tuning, we train the Meta-Model for 60, 000 iterations, replicating
the results on 20-way classification in the original paper [3]. To
create a fine-tuned model for a task, we sample 20 points from
the task (1 test point per class), and 1-shot train the meta-model to
obtain the weights of the fine-tuned model. We then sample another
20 points from the task to create an attack, ensuring that each point
is correctly classified by the fine-tuned model. We then measure the
quality of an attack via the fooling rate on the fine-tuned model: the
fraction of examples which were originally classified correctly, yet
1Though glanced over here, there do exist rigorous metrics of how continuous a
function is, e.g. the δ to ϵ ratio in the definition of uniform continuity.
2This is not a very restrictive assumption, seeing as it is necessary to perform gradient
descent during training in the first place.

were misclassified after perturbation. Following the experiments
from [9], we use the ADAM solver [6] to construct our adversarial
examples x̃ .

3.3 Robustness of MAML to Adversarial Attack

As a baseline, we test the susceptibility of the MAML meta-model
fθ and a fine-tuned model fθ ′

i
to adversarial attacks, both by di-

rect FGSM and optimization-based attacks, and by construction of
universal perturbation vectors.

To attack a meta-model fθ , we draw a task Tj ∼ p(T) and a data
point (x j ,yj ) ∼ Pj .Tj should be a task onwhich themeta-model was
trained. We first use FGSM to construct a perturbed example x̃ j by
ascending the gradient ∇x

∑
Ti∼p(T) LTi (fθ ′

i
(x j ),yj ) from equation

(1). Then, we construct universal adversarial perturbations for the
given task. That is, we seek a perturbation which causes fθ ′

i
to yield

errors across its K task-specific input examples.
To attack fine-tuned model fθ ′

i
, we will draw a sample (xi ,yi ) ∼

Pi and ascend the gradient ∇xLi (fθ ′
i
(xi ),yi ) to construct a per-

turbed example x̃i . Then, we construct universal adversarial per-
turbations to all inputs to task Ti .

3.4 Transferability of Adversarial Attacks from

Meta-Model to Task-Specific-Model

We evaluate the ability to zero-shot transfer adversarial attacks
from the meta-model fθ to fθ ′

i
which is fine-tuned for task Ti .

To transfer a direct FGSM attack from fθ , we draw an input xi
from task Ti , to which we would like to transfer the attack, and
adversarially perturb it by ascending the gradient of the task’s loss
using themeta-model’s parameters:∇xLi (fθ (xi ),yi ). Since we only
take K gradient steps to produce θ ′i from θ , we hypothesize that the
parameters are sufficiently close to allow to ascend this gradient in
a reasonable manner.

We previously discussed constructing a universal perturbation
that works well on many samples for a particular task. In this
experiment, we look for a perturbation which works well on many
samples for many related tasks; that is, given a meta-model fθ , we
seek a perturbation which causes fθ to yield errors on a variety
of different inputs and subtasks. Here we attempt to find such a
task-universal perturbation by applying a method similar to that
used to find universal perturbations for a single task. We draw
tasks and inputs repeatedly from their respective distributions,
ascend the gradient of the relevant loss function and normalize the
perturbation vector at each step. After a sufficiently dense sampling
of tasks and inputs, the resulting perturbation vector should be
universal for both tasks and inputs. Given the existence of such a
universal perturbation with respect to the MAML meta-model, we
will evaluate the ability to zero-shot transfer this adversarial attack
to the resulting fine-tuned models. Specifically, beginning with the
MAML meta-model, we fine-tune the model for each of its learned
tasks (the ones for which the meta-model was vulnerable to attack)
and evaluate whether the adversarial perturbation is still successful
in attacking the task-specific models. Then, we fine-tune the meta-
model for related tasks outside of this training set, and attempt to
attack these models with the previously-found perturbation.
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Figure 1: Fooling rate of the attack methods as a function of

the size of the perturbation. Although the random method

shows that the Omniglot classifier is already fragile, the

transfer techniques still work effectively for low ϵ .

Table 1: Attack Performance (ϵ = 0.8)

Attack Method Fooling Rate
Random .572

UPERT FT → FT .619
FGSM FT→ FT .685
UPERT ML→ FT .701
FGSM Direct .759

FGSM ML→ FT .810

3.5 Transferability of Adversarial Attacks

between Task-Specific-Models

Next, we evaluate the transferability of adversarial attacks from
some MAML fine-tuned model fθ ′

i
to some other MAML fine-tuned

model fθ ′
j
by the optimization attack, direct FGSM and universal

perturbation vectors.
We expect that between two fine-tuned models derived from a

common MAML model, the parameters are sufficiently similar to
let us use an attack successful on one model to attack the other.
That is, the representations between two fine-tuned models are
similar enough that it is feasible to come up with an adversarial
perturbation that exploits the shared representation captured in
one pseudo-model.

Here, we don’t even need the original meta-model: having both
fine-tuned models and the knowledge that they were fine-tuned
from the same attack is sufficient. We evaluate the ability to zero-
shot transfer adversarial attacks from fine-tuned model fθi to fine-
tuned model fθ j . To transfer a direct FGSM attack from fθi , we
draw an input from the task Tj to which we would like to transfer
the attack, and adversarially perturb it by ascending the gradient
of the initial task ∇xLi (fθ ′

i
(x),y).

To transfer a universal adversarial perturbation from fθi , we
first construct an adversarial perturbation universal to all inputs to
task Ti ; that is to say, we seek a perturbation p which causes fθ ′

i
to yield misclassification for all available input examples. We then
adversarially perturb input x to task Tj by p.

(a) (b) (c) (d)

Figure 2: Characters from the Omniglot language classifi-

cation task (a) without perturbations, (b) perturbed with

FGSM, (c) randomly perturbed, (d) with a universal peturba-

tion

4 PRELIMINARY RESULTS

We show preliminary results in Figure 1 and Table 1, and sample
adversarial images in Figure 2. The setup for this test is as described
in section 3.2; briefly, a 4-layer CNN Meta-Model is trained on the
Omniglot data set for 60,000 iterations, after which single-shot
training is used to create child fine-tuned models. As shown in
Figure 1, four types of attacks on a fine-tuned model were explored:
a random perturbation, a direct attack using FGSM, an attack using
FGSM on the meta-model parameters, and an attack using FGSM
on a sibling fine-tuned model parameters.

As expected, the lowest fooling rate for all epsilon was achieved
by the random perturbation; however, the difference between the
fooling rates for the random perturbation and the gradient-based
attacks is not as large as one might anticipate. Indeed, even for
perturbations of size between 0.06 and 0.08, the susceptibility of
our classifier to random perturbations is roughly 50%. Further work
is needed to understand whether this high susceptibility to random
attack is a general characteristic of MAML fine-tuned models or an
artifact of either the Omniglot dataset or our particular classifier. For
example, one could train the exact same CNN architecture we used
without the MAML initialization, or with more than single-shot
training on the fine tune task, and see whether this susceptibility
persists.

Transfer techniques seem to be effective in achieving high fool-
ing rates for low values of epsilon (see Figure 1). For the majority
of the epsilon values tested, it does not appear that there is much
difference between attacking a model using its own gradient or
attacking it using either the Meta-gradient or another fine-tuned
gradient. A natural question arises as to whether the similar efficacy
of these attacks is due to the high vulnerability of the classifier itself
(as evinced by the effectiveness of the random perturbations) or
due to some similarity in FGSM directions given by each gradient.
Further work will explore this question.

Perhaps most surprisingly, for epsilons greater than roughly 0.04,
the direct attack of a model using its own gradient was outperformed
by attack using the meta-model gradient. Whether this is a robust
feature of MAML-trained models or a statistical anomaly remains
to be seen.
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5 CONCLUSION

The impact of adversarial attacks on MAML trained meta-models
and the task-specific models fine-tuned from these meta-models is
far reaching. If it can be shown that adversarial attacks can transfer
with ease between fine-tuned models, then future models taught via
meta-learning may all be vulnerable to adversarial perturbations
generated using a single fine-tuned model. On the other hand, if it
can be shown that adversarial attacks have difficulty transferring
between tasks, even with "fine-tuning", then this reveals that meta-
learned models provide some sort of robustness against transfer of
adversarial attacks.

In either case, the results of this study should motivate future
work on adversarial robustness of meta-learning models. Recent
work in deep learning security has aimed at finding ways to make
models more robust to adversarial attacks, both by training phase
defenses, such as adversarial distillation [5] [14], defensive distil-
lation [1], and gradient blocking [13]; and by adversarial sample
detection defenses, such as detectors [19] and reformers [10]. The
steps we take towards understanding the vulnerabilities of MAML-
based models to transferred attacks may lead to improved defenses
methods against such attacks, potentially for both MAML and other
meta-learning approaches.
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