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Abstract

We propose a method to apply Generative Adversarial Networks to
image compression. The proposed method removes significant portions of
an image while retaining some assistant information, and fills the gaps using
generative model inpainting. We use Plug and Play Generative Networks
as our inpainting framework, and explore several different ablation schemes
in order to determine the most useful information present in an image.
Finally, we demonstrate the performance of this method in comparison to
JPEG.

1 Introduction
With the rise in popularity of neural networks there have been numerous works
pushing the boundaries of image compression. These methods beat both the
quality and compression ratio of JPEG. However, many of these approaches
focus on making the compression perceptually unnoticeable. In reality, not all
details are equally important and there are often whole regions where the details
don’t need to be preserved well. Even though there are methods that allow
for spatially varying compression rates, they don’t target specific features of an
image to degrade; instead they degrade the overall quality of the image.

Ideally, a compression algorithm would be able to selectively ignore different
kinds of details in different parts of the image, thus optimizing compression rate
for the given application. We call this approach Ablative Image Compression.
In this project, most of our focus is on approaching Ablative Image Compression
through Image inpainting.

A previously popular method for weighted compression utilized image in-
painting [5] (figure 1). The method removes parts of the image, compresses the
leftover portions of the image while encoding - and infers the removed portion of
the image using previously saved ‘assistant information’. By varying the types
and amount of assistant information retained, the algorithm can be adapted to
achieve Ablative Compression.
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We combine this result with the recent inpainting success of Plug and Play
Generative Networks [7]. PPGN utilizes conditional iterative generation to
ascend the natural prior gradient.

We utilize PPGN to power our image compression algorithm. PPGN is
particularly adept at inpainting relatively large missing portions of an image as
shown in figure 2.

2 Related Work
Over the last few years, neural networks have shown great promise for image
compression through transform coding. Transform coding involves transforming
an image into a domain where its code is easily compressible, and since neural
networks are able to learn non-linear transformations (as opposed to linear
transformations used in JPEG), these architectures can be used to compress
images at any point on the rate-distortion curve, with spatially-variant fidelity
for content-weighted compression [1],[11],[10]. These networks are more flexible
than JPEG, and they surpass JPEG in both compression ratio and image quality,
making them ideal for compression and super-resolution tasks.

On the other end of the spectrum, analytical methods like [2],[5] explore a
completely different approach from transform-coding. These methods retain
a small part of the image, and exploit the spatial redundancy and structure
of natural images to reconstruct the discarded part through inpainting. These
methods show great promise, especially for cartoon-like images [2] or images
with low texture detail, but for more complex images, the reconstruction quality
suffers, and finding the best pixels to retain becomes computationally intractable.
To deal with this intractibility, approaches like [5] preserve pixels near edges to
retain structure, and some pixels away from edges to retain texture. With this
approach, reconstruction quality and compression ratio are highly dependent on
the quality of the image prior used in the inpainting method. The traditional
inpainting approaches like texture synthesis and exemplar-based inpainting use
geometric properties of images as the prior, but neural inpainting approaches
like [8],[7] show great potential by going one step further and learning more
complicated image statistics, facilitated by recent developments in generative
adversarial networks [4], [13]

3 Approach and Architecture
We explored numerous approaches to achieve ablative image compression.

3.1 PPGN
In order to re-create the results from [5] and be able to experiment with a
varying degree of assistant information, we wanted to use a flexible network
architecture that we would not have to re-train for every experiment. After
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trying several approaches, we settled on Plug and Play Generative Networks [7]
as our architecture (as demonstrated in figure

To compress our image, we use an approach similar to [5] and mask away
the uninformative pixels on an image. The exact choice of pixels depends on the
application, but in order to keep a fair comparison with [5] we mask the pixels
that are distant from the edges and don’t convey much structural or textural
information.

Our image code thus descends the loss function

Lppgn(~x, ~p) = LE(~x, ~p) + LC(~x, ~p) + LA(~x)

where LE is the autoencoder loss for the E network, LA(~x) is the assistant
information loss, and LC is the loss from the conditional network C. See figure
3 for network details.

3.1.1 Masking Experiments

For simplicity and demonstration of the technique, we first observed the image
produced when we preserved a 100× 100 pixel square in the centre of the image.
We found that PPGN could readily fill in the details around the square itself.
However, we also noticed that the borders of the square were oftentimes fairly
apparent - something we drastically wanted to change.

In order to test the efficacy of the inpainting approach for compression, we
tried reconstructing images with three varying levels of information: 1) Randomly
chosen pixel values, 2) Pixel values at all the edges, and 3) Pixel blocks close to
the edges and some randomly chosen pixel blocks far away from the edges.

The authors in [2] were able to achieve relatively good inpainting results
using a sample of 1% of the pixels in an image and inpainting using PDEs based
on the Heat Equation. In comparison, our reconstructions with randomly chosen
1% pixels were quite poor, even if the pixels were chosen to be close to the edges.
This hints at the importance of the exact mask shape.

We also tried using just pixel blocks close to edges, and pixel blocks both
close and far away from edges. In general, the number of pixel blocks did not
seem to matter as much as their position.

3.1.2 Adding up loss functions.

We hypothesized that adding perceptual losses to our image would improve
the reconstruction quality at the cost of compression ratio. We explored three
different losses

1. Edge Loss - We utilized the Laplacian of the Gaussian to get the edges
of the original image and took the L2 difference from the reconstructed
image to determine the edge loss

Ledge(~p, ~x) = ‖Laplace(~x)− Laplace(~p)‖2
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2. Style Loss - borrowed from Image Style Transfer Using Convolutional
Neural Networks [3]

Lcontent(~p, ~x, l) =
1

2

∑
i,j

(F l
ij − P l

ij)

Where F l and P l are the filter responses of the original image x and p at
a layer l in a CNN trained on ImageNet.

3. Content Loss - also borrowed from [3]

Lstyle(~p, ~x) =
1

2

L∑
l=0
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El =
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and G, A are the grammian self-similarity matrix of layer activations Fl

and Pl respectively. In style loss, we choose several layers, weighted by the
constant wl, to use for self-similarity.

Our overall loss function was thus

L(~x, ~p) = Lppgn + λedgeLedge + λstyleLstyle + λcontentLstyle

Where λ’s were hyperparameter scalars that weighted the influence of each loss
function to the overall loss.

4 Results
We needed a metric to compare our results with the state of the art, standard
JPEG encoding. We chose to use SSIM [12] because of it’s known correlations
with human perception of genuine images, as well as it’s simplicity to calculate.
The results are tabulated in Table 1 As you can observe from the table, we were
unable to beat the perceptual quality of JPEG compression, even at rates of
1% quality. There are certainly a number of reasons for this phenomenon. If
you observe the image comparison in figure 4 you’ll clearly see that the images
generated using our method did not out compete JPEG’s ability to handle
Despite this, it should be noted that there are a number of artifacts that are
a result of our sampling method as well as naive assumptions made by the
GAN. This suggests that we can improve our method by a loss function around
the edges of the masks, encouraging gradient descent to reduce the boundary
between the masked image and the produced image.
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Table 1: SSIM metric similarities. Entries with letters next to them have a
corresponding image in Figure 4

Method SSIM

JPEG 1% quality (a) 0.438
JPEG 5% quality 0.555
JPEG 25% quality 0.797
JPEG 50% quality 0.864
Pixel sampling (b) 0.126
Pixel sampling + style loss (c) 0.149
Pixel sampling + content loss (d) 0.156
Pixel sampling + edge loss (e) 0.154
Block sampling (e) 0.366
Block+Random sampling (f) 0.389
B+R sampling + style loss (g) 0.398
B+R sampling + content loss (h) 0.403
B+R sampling + edge loss (i) 0.399

5 Discussion and Future Work
Our experiments for assistant information efficacy agreed with the results as seen
in analytical approaches for inpainting. Our reconstructions suffered from the
GANs limited reconstruction capabilities, but we expect that to be fixed as we
explore different architectures, training methods, and masks. We would also like
to explore training feedforward networks as used in [8] for better reconstruction.
Another direction for improving inpainting would be to look at perceptual losses
such as that used in Deep Photo Style Transfer in addition to the edge loss and
style transfer losses from this work.

6 Conclusion
We observed that the network was able to synthesize an approximation of the
target image with spatially varying degrees of accuracy and efficiency. We found
that using randomly chosen pixels as the data for reconstruction works, but
using edge information, perceptual style loss, and similar assistant information
increases the performance significantly. We also found that the position of pixels
was much more important than their number, hinting at possible optimizations
in future. In the long run, improvements in GAN technology will allow for higher
accuracy and efficiency, thus allowing for compression of low-priority regions
with much less data than conventional transform coding techniques.
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Appendix

StackGAN
We explored the StackGAN architecture [13], the PPGN architecutre [7], and
finally adding style transfer losses [3] to the PPGN model loss.

StackGAN Architecture

One of the approaches we tried before settling on PPGN were conditional GANs
like StackGAN. In StackGAN, the authors use two GAN architectures, layered
on top of one another as demonstrated in figure 5. An image caption is fed
through the first GAN, generating a low resolution and sometimes structurally
ambiguous image. The next GAN is then conditioned with this low-resolution
image, along with the original caption, and generates a high resolution image
with near photo-like qualities.

We adapted this framework by removing the first layer of the network, and
instead down sampling an image to the size of the first GAN’s output. The
results of this approach are located in figure 6.

The results of the approach were non-ideal. Although we were able to reduce
the dimensions of an image by 1/4 (which we could then just use any compression
method to preserve), the resulting images were oftentimes much further from
the original image than we expected. This is likely because the generation of an
image was heavily dependent upon the caption itself, as well as the stochasticity
of the network caused by dropout.

Furthermore, the approach we were using was limited to specific domains, a
trade off that enabled the GAN to generate photo-realistic images. We decided
to explore other options.

Hyperparameters
We conducted a number of surveys on our hyperparameters of our original PPGN
masking approach
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Figure 1: Inpainting from [5] (a) Original Image (b) Blocks removed for inpainting
(c) Image after reconstruction (d) JPEG comparison
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Figure 2: PPGN inpainting [7]

Figure 3: Noiseless joint PPGN-h architecture from [7]. x denotes an image, and
h denotes the vector code representing that image. G transforms the h code into
perceivable image space as x. C is the condition network - included as part of
the overall optimization to ensure that the reconstructed image matches the code
of the original image. E1 and E2 compose an encoding network. The h1 vector
represents the vector representing the image after pool5 of the network. We did
not tinker with this code in our experiments. G is the generative component of
the DCGAN architecture [9] and is pretrained on ImageNet. C and E are the
same CaffeNet architecture (a modification of AlexNet).
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Figure 4: Image Quality demonstration. A guide for each compres-
sion/reconstruction method is listed in Table 1.

Figure 5: The StackGAN architecture from [13]
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Figure 6: Reconstruction of an image using StackGAN. The input to the GAN
are the down-sampled images in the row labelled ’Stage-I’. The image caption
from the original dataset is displayed on top.

Figure 7: Example of different masks used for inpainting
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Figure 8: Inpainted results with different levels of image sampling
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Figure 9: Demonstrations of different loss values
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